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One of the central skills of this course is showing that certain statements are true, by
giving very careful arguments from clearly specified premises, at a very high standard
of precision. The way we do this is with informal proofs. Here “informal” contrasts
with the formalized proofs that we will discuss later in the class (and which you might
have practiced in previous logic classes). We are writing our arguments in clear English,
rather than in an artificial language like predicate logic, and we are using any kind of clear
reasoning that shows that our conclusions follow from our premises, rather than restricting
ourselves to mechanical rules of the sort that a simple computer program could check.
But “informal” doesn’t mean sloppy, and it doesn’t mean that just anything goes. You
may never have had to write out rigorous proofs before, and that’s fine: this class does not
assume that you already have these skills. You’ll learn them.
Sometimes students say they don’t know how to get started on an exercise. These tech-
niques give you a way to get started. These are all pretty “low-level” techniques. With
practice, they will become automatic, and when that happens you’ll be able to give more
of your attention to the really interesting parts of the proofs, instead of the basic details of
“every” statements and “if” statements, and what to suppose and what you have to show.
Once you get good at it, proving things can be like making music—but we have to start
by practicing scales and arpeggios.

1 Give yourself room

It might be tempting to try to start writing down your proof from the beginning, and keep
going until you reach the end. That doesn’t usually work. The activity of discovering
a proof and the activity of presenting or explaining a proof to others are very different.
You’re going to do both things, so to keep things clear you’re going to need (at least) two
pieces of paper: a discovery page, and a presentation page. Once you have discovered the
whole proof, using the techniques we’ll discuss, then you can write it down neatly from
beginning to end. (See the section “Putting it together”, @sec:putting-it-together below.)

2 Keep track of your goals

When you are working on a proof, you need to keep track of the answers to the two most
important questions.
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1. What am I trying to show?
2. What relevant things do I already know?

When you start working on your proof, start by writing down the answers to these ques-
tions. First write down “Show”, and the statement of what you are trying to prove. Then
write down “Suppose” (or “Assume” or “Given” or “Know”) and the statements of the
things that you already know.
You shouldn’t always try to write down everything you know. You can’t always tell in
advance what’s going to be relevant, and you can always add something else to your list
later when you think of it. But you should at least write down the things that are given to
you in the statement of the exercise itself. You should also make sure to look carefully at
the other definitions, lemmas, theorems, and exercises that come immediately before the
exercise you’re working on, especially those that use similar words or notation.
When you write these down, you should pay attention to the logical structure of each
statement. Is it an “if … then …” statement? A “for all …” statement? A “there exists
…” statement? There are different strategies to use for each of these kinds of statement,
so it’s important to figure out what kind you are dealing with.
As you go, your goals will change. (See the examples below.) You’ll need to keep your
notes organized so that you can easily tell what the answer is to the two key questions
at your current stage of progress: What am I trying to show? What relevant things do I
know?

3 Proving an “every” statement

Suppose this is your goal:

Show Every set is a subset of itself.

This is an “every” statement. We can rewrite it another way that makes its structure more
explicit:

Show For every set 𝐴, 𝐴 is a subset of 𝐴.

In this explicit form, an “every” statement has four parts.

1. “For every”. This tells us what kind of statement we are dealing with—a universal
statement, which says that all of a certain kind of thing have a certain property.
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2. The kind of thing we are talking about: “set”. (This is called the restrictor.)

3. The letter 𝐴; this is a variable. It doesn’t matter very much which letter we use, but
we’ll want to choose a letter that isn’t too confusing. There are conventions to use
certain letters for certain kinds of things: for example, for sets we’ll normally use
the capital letters 𝐴, 𝐵, 𝐶 , or 𝑋, 𝑌 , 𝑍. We also want to avoid using a letter that
we’re already using for some other purpose. If we need to, we can add decorations
to distinguish different variables from each other, like 𝐴′, 𝐵2, or �̂�.

4. The property we are showing that every set has—“𝐴 is a subset of 𝐴”. (This is
called the matrix clause.)

In English—even in the relatively regimented English of technical writing—“every” state-
ments can come in a lot of forms. It’s important to be able to recognize them, and to break
them up into these four pieces. Here are some more examples (with brackets around the
restrictor and the matrix).

3.1 Example
(a) All ravens are black.

For every [raven] 𝑥, [𝑥 is black].

(b) Any consistent set of sentences has a model.
For every [consistent set of sentences] 𝑋, [𝑋 has a model].

(c) If 𝑓 is a function from 𝐴 to 𝐵, then the range of 𝑓 is a subset of 𝐵.
For every [function from 𝐴 to 𝐵] 𝑓 , [the range of 𝑓 is a subset of 𝐵].

(d) Every closed term contains at least one constant.
For every [closed term] 𝑎, [𝑎 contains at least one constant].

(e) Every set is smaller than its power set.
For every [set] 𝐴, [𝐴 is smaller than 𝐴’s power set].

(f) No set is as large as its own power set.
For every [set] 𝐴, [𝐴 is not as large as 𝐴’s power set].

Now suppose we are trying to show an “every” statement, and we have identified its logical
structure.

For every [set] 𝐴, [𝐴 is a subset of 𝐴].

Now here is our strategy:
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Suppose 𝐴 is a set
Show 𝐴 is a subset of 𝐴

That is, we’ll add “𝐴 is a set” to our list of things we are supposing, and we’ll write
down “Show 𝐴 is a subset of 𝐴.” This doesn’t solve the problem yet—but it simplifies the
problem. Our problem asked us to prove something complex, with some logical structure.
We have now broken down our goal into something less complex.
When we apply this strategy, it’s important to be careful with our choice of variables. One
way we can make mistakes is if we have already been using the letter 𝐴 for some other
purpose that’s different from showing this “for all” statement; then there is a risk of mixing
up the two different uses of “𝐴.”
Here’s how this strategy works for our other example sentences.

3.2 Example
(a) All ravens are black.

Suppose 𝑥 is a raven
Show 𝑥 is black

(b) Any consistent set of sentences has a model.

Suppose 𝑋 is a consistent set of sentences
Show 𝑋 has a model

(c) If 𝑓 is a function from 𝐴 to 𝐵, then the range of 𝑓 is a subset of 𝐵.

Suppose 𝑓 is a function from 𝐴 to 𝐵
Show The range of 𝑓 is a subset of 𝐵

(d) Every closed term contains at least one constant.

Suppose 𝑎 is a closed term
Show 𝑎 contains at least one constant

(e) Every set is smaller than its power set.

Suppose 𝐴 is a set
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Show 𝐴 is smaller than 𝐴’s power set

(f) No set is as large as its own power set.

Suppose 𝐴 is a set
Show 𝐴 is not as large as 𝐴’s power set

3.3 Exercise
Identify the logical structure of each of the following “every” statements, and use this
structure to write down the new “suppose” and “show” statements you would need to
prove it.

(a) Every one-to-one correspondence is an onto function.

(b) Every set which is at least as large as the set of numbers is infinite.

(c) A set of sentences is logically consistent iff it has a model.

(d) For any sets 𝐴 and 𝐵, if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵.

(e) If 𝐴 is any non-empty set, there is a one-to-one function 𝐴 to 𝐵 or there is an
onto function from 𝐵 to 𝐴, as long as 𝐴 is not empty.

(f) No theory is simple, strong, consistent and complete.

4 Unpacking definitions

Suppose we have this goal:

Show 𝐴 is a subset of 𝐴.

This involves a technical term “subset”, which has an official definition. We can look it
up:

Definition. If 𝐴 and 𝐵 are sets, then 𝐴 is a subset of 𝐵 iff every element of 𝐴 is an
element of 𝐵. This is also written 𝐴 ⊆ 𝐵 for short. We say 𝐴 is a proper subset of
𝐵 iff 𝐴 is a subset of 𝐵, but not the same set as 𝐵.

We can use this definition to “unpack” our statement, transforming it into this:
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Show Every element of 𝐴 is an element of 𝐴.

The same trick applies to technical notation which is expressed in symbols rather than
words. The notation

𝐴 ⊆ 𝐴
is defined to be a shorthand for “𝐴 is a subset of 𝐴”. So we can use the same definition to
unpack this in exactly the same way, as “Every element of 𝐴 is an element of 𝐴.”
Notice that the particular letters used as variables in the definition don’t matter. They are
placeholders. We can plug in any sets we want. In this case, we have plugged the set 𝐴
into both spots in the definition—both the “𝐴” and the “𝐵” slots from the definition get
plugged up with 𝐴.

4.1 Example
We can use the definition above (of “subset” and “proper subset”) to unpack the following
statements.

(a) 𝑋 is a proper subset of 𝑌
Every element of 𝑋 is an element of 𝑌 , and 𝑋 and 𝑌 are not the same set.

(b) 𝐵 ⊆ 𝐴
Every element of 𝐵 is an element of 𝐴.

(Pay attention to the order!)

4.2 Example
Here are some more definitions.

• If 𝐴 and 𝐵 are sets, a function 𝑓 from 𝐴 to 𝐵 is one-to-one iff for each 𝑎, 𝑎′ ∈ 𝐴,
if 𝑓𝑎 = 𝑓𝑎′ then 𝑎 = 𝑎′.

• If 𝐴 and 𝐵 are sets, 𝐴 and 𝐵 have the same number of elements iff there is a
one-to-one correspondence between 𝐴 and 𝐵. This is abbreviated 𝐴 ∼ 𝐵.

• A sentence 𝐴 is a logical truth (or valid) iff 𝐴 is true in every structure.

Here are some examples of how to unpack these definitions in different statements.

(a) There is a one-to-one function from 𝐴 to its power set.
There is a function 𝑓 from 𝐴 to the power set of 𝐴 such that, for each 𝑎, 𝑎′ ∈ 𝐴, if
𝑓𝑎 = 𝑓𝑎′, then 𝑎 = 𝑎′.
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(b) No set has the same number of elements as its power set.
There is no set 𝑋 such that there is a one-to-one correspondence between 𝑋 and the
power set of 𝑋.
(Notice that in order to unpack the definition, we introduced a variable 𝑋 for the
set we are talking about. The letter 𝑋 was arbitrary. We could have used 𝐴 or 𝐵 or
𝐴′ or something else if we wanted to. We just want to be clear, and make sure that
our choice doesn’t conflict with other variables we are already using in the context
of our proof.)

(c) The sentence ∀x(x = x) is a logical truth.
The sentence ∀x(x = x) is true in every structure.

(d) Every logical truth is a logical consequence of the empty set.
For every sentence 𝐴 which is true in every structure, 𝐴 is a logical consequence of
the empty set.

4.3 Exercise
Unpack the definitions from above in the following statements.

(a) 𝐶 is a logical truth.

(b) 𝑔 is a one-to-one function from 𝐵 to 𝐴.

(c) ℕ (the set of all natural numbers) is not a subset of the empty set.

(d) The successor function suc (which is a function from ℕ to ℕ) is one-to-one.

(e) The empty set is a proper subset of its power set.

(f) Every logical truth is consistent.

(g) There are one-to-one functions from 𝐴 to 𝐵 and from 𝐵 to 𝐴.

(All of the examples we’ve discussed here are examples of what are called explicit defi-
nitions. Later on we’ll encounter a different, trickier kind of definition, called a recursive
definition.)
It can be tempting to try to unpack definitions as your very first line of attack on a problem.
But usually this isn’t a good idea. Notice that unlike most of our strategies, unpacking
definitions turns simple statements into more complicated statements. That means that
if you do it right away, you make your problem more complicated. Usually you want to
wait to unpack definitions until after you’ve already applied all the other strategies you

7



can (like the “proving an ‘every’ statement” technique). Sometimes you won’t have to
unpack a definition at all to finish a problem. In those cases, your solution will be easier
to discover and easier to understand if you keep the definition “packed in.”
A definition is like a suitcase. You can pack a lot of information into a definition, and then
carry it around your proof in a small tidy container. The right time to unpack your suitcase
is when you’ve arrived at the place where you’re going to use what’s inside it.

5 Proving an “if” statement

Suppose we have this goal:

Show If 𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶 ,
then 𝐴 is a subset of 𝐶 .

The first thing to do is to identify its structure. In this case, we recognize that this is an “if
… then …” statement. Other than the “if” and “then”, it has two parts:

If [𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶], then [𝐴 is a subset of 𝐶].

We can think of the first piece,

𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶

as the “input” for the “if … then …” statement, and we can think of the second piece

𝐴 is a subset of 𝐶

as its “output.” What we want to show is that we can get from the input to the output.
(These two pieces are called the antecedent and the consequent.) So here is our strategy:

Suppose 𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶
Show 𝐴 is a subset of 𝐶 .

That is, we can write down the first part in our list of things we are supposing, and write
down “𝐴 is a subset of 𝐶” as our new “to show”.
While we’re at it, we can split up the “and” statement. So we’ll add two assumptions:

Suppose 𝐴 is a subset of 𝐵
𝐵 is a subset of 𝐶

Show 𝐴 is a subset of 𝐶
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Now that we have new things to suppose, and a new thing to show, we can go on and apply
more strategies to try to finish the proof. (“Unpacking definitions” is a good one to go for
next.)

5.1 Example
Identify the “if … then …” structure of the following statements, and use this to write
down the new “suppose” and “show” statements that you would use to prove them.

(a) If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵.

Suppose 𝐴 ⊆ 𝐵
𝐵 ⊆ 𝐴

Show 𝐴 = 𝐵

(b) If there is an onto function from 𝐴 to 𝐵, then there is a one-to-one function from 𝐵
to 𝐴.

Suppose There is an onto function from 𝐴 to 𝐵
Show There is a one-to-one function from 𝐵 to 𝐴

(c) If there is a one-to-one function from 𝐴 to 𝐵, then there is an onto function from 𝐵
to 𝐴, unless 𝐴 is empty.

Suppose There is a one-to-one function from 𝐴 to 𝐵
𝐴 is not empty

Show There is an onto function from 𝐵 to 𝐴

(d) If 𝑋 ⊨ 𝐴 and 𝑌 , 𝐴 ⊨ 𝐵 then 𝑋, 𝑌 ⊨ 𝐵

Suppose 𝑋 ⊨ 𝐴
𝑌 , 𝐴 ⊨ 𝐵

Show 𝑋, 𝑌 ⊨ 𝐵

(Notice that you don’t even need to know what this notation means in order to iden-
tify the logical structure.)
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5.2 Exercise
Identify the “if … then …” structure of the following statements, and use this to write
down the new “suppose” and “show” statements that you would use to prove them.

(a) If 𝐴 is no larger than 𝐵 and 𝐵 is no larger than 𝐶 , then 𝐴 is no larger than 𝐶 .

(b) If 𝑚 ≤ 𝑛, then either 𝑚 = 𝑛, or suc 𝑚 ≤  𝑛.

(c) If {𝐴, 𝐵} is consistent, then ¬𝐵 is not a logical consequence of 𝐴.

(d) If 𝑇 is sufficiently strong, axiomatizable, and consistent, then 𝑇 is incomplete.

6 Putting it together

6.1 Example
Suppose we are doing this exercise:

Prove that every set is a subset of itself

We start by writing down our goal.

Show Every set is a subset of itself

We don’t have any relevant facts to write down as “given” for this problem, but we will
want to make sure to keep the definition of “subset” handy.
Our first step is to identify the structure of this statement. It looks like an “every” state-
ment. Let’s rewrite it so its logical structure is very clear.

Show For every set 𝐴, 𝐴 is a subset of 𝐴

Now we can break this up, given us a new goal:

Suppose 𝐴 is a set
Show 𝐴 is a subset of 𝐴

How can we solve this simpler problem? Our “given” and our “show” don’t look like they
have any more complex logical structure at this point, so it looks like it’s time to unpack
the definition of “subset.”
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Suppose 𝐴 is a set
Show Every element of 𝐴 is an element of 𝐴.

But now the thing we have to show is completely obvious. (You could break it down even
further with the “every” strategy: assume 𝑎 is an element of 𝐴, and then show 𝑎 is an
element of 𝐴—which is trivial. But there is no need to go this far in breaking it down.) So
we’re done! That is, we’re done discovering the structure of our informal proof. The last
step is to put together all of our pieces in the right order, to make the proof understandable
to other people. Here is how this might go:

Let 𝐴 be a set. It is obvious that every element of 𝐴 is an element of 𝐴. This means
that 𝐴 is a subset of 𝐴. So every set is a subset of itself.

This paragraph looks pretty different from the fragments that we wrote down on the way
to finding it. Instead of a bunch of “givens” and “shows”, we have put the whole thing
together in logical order, from beginning to end. The order of discovery is different from
the order of justification. In the order of discovery, we wrote down whatever was going
to be helpful for us at the time for our next stage of simplification. But in the order of
justification, we want to write things down step-by-step, so that each part of the proof
comes immediately after what it relies on for justification.
Roughly, the steps we took to find this proof correspond to the final structure of the pre-
sented proof, not from beginning to end, but rather from the outside in. We can represent
the logical structure of our informal proof like this:

Let A be a set.
It is obvious that …

every element of A is an element of A. This means that …
A is a subset of A.

So every set is a subset of itself.

The “highest” or “outermost” level of logical structure is the thing we were originally
trying to prove:

So every set is a subset of itself.

The next level in corresponds to the first strategy we used to prove this, the “prove an
“every” statement” strategy.

Let 𝐴 be a set. … 𝐴 is a subset of 𝐴.

The next level in corresponds to the next strategy we used, unpacking the definition of
“subset”
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… every element of 𝐴 is an element of 𝐴. This means that …

And the final, deepest level corresponds to the last part of our process of discovery, where
we noticed that the only thing thing we had left to show was obvious.

It is obvious that …

Here’s the basic idea. After you have found the logical structure of your proof, by breaking
things down until your “Show” statement very obviously follows from your “Suppose”
statements, you need to retrace your steps. It’s helpful to start from the end, looking at
the last statement of your proof—the main thing you are trying to show. Then ask “what
strategy did I use to get to this point?” That tells you what should go before that step in
your polished presentation of the proof. Keep doing this until the answer is “nothing—it
was obvious”. This will give you the order in which you need to write things down.
As for the actual words you write down, there is no mechanical recipe. The goal is to
communicate the steps of you proof in a way which is elegant, concise, accurate, and easy
to understand. Getting there takes practice and a sense of style.
Let’s look at another example.

6.2 Example
We have this goal:

Show For any sets 𝐴, 𝐵, and 𝐶 , if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 ,
then 𝐴 ⊆ 𝐶 .

First we observe that this is an “every” statement. We can think of it as being built up out
of three different nested “every” statements (“For every set 𝐴, for every set 𝐵, for every
set 𝐶 , …”). But it’s simpler to just handle all three of them at once.

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set

Show If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 , then 𝐴 ⊆ 𝐶

Next we notice that we have an “if … then …” statement that we can break down. We’ll
keep our old “suppose” statements and add some new ones.

Suppose 𝐴 is a set
𝐵 is a set
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𝐶 is a set
𝐴 ⊆ 𝐵
𝐵 ⊆ 𝐶

Show 𝐴 ⊆ 𝐶

This looks about as simple as we can get without unpacking definitions. So let’s do that
now. We’ll unpack the definition of ⊆ three times.

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set
Every element of 𝐴 is an element of 𝐵
Every element of 𝐵 is an element of 𝐶

Show Every element of 𝐴 is an element of 𝐶

At this point we could declare it obvious enough that what we want to show follows from
what we are supposing, and be done. But for the practice, let’s go ahead and break this
proof down into even more basic steps this time. Again, we have an “every” statement to
show. We can restate it, introducing a new variable:

For every [element of 𝐴] 𝑎, 𝑎 is an element of 𝐶 .

So we can break it down again:

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set
Every element of 𝐴 is an element of 𝐵
Every element of 𝐵 is an element of 𝐶
𝑎 is an element of 𝐴

Show 𝑎 is an element of 𝐶

And now it’s clear how to finish. We know 𝑎 is an element of 𝐴. One of our assumptions
tells us that this implies 𝑎 is an element of 𝐵. Then another assumption tells us that this
implies 𝑎 is an element of 𝐶 .
Now let’s put this all together, and write up our informal proof.
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Let 𝐴, 𝐵, and 𝐶 be sets, and suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 . Let 𝑎 be any element
of 𝐴. Then since every element of 𝐴 is an element of 𝐵, 𝑎 is an element of 𝐵. And
since every element of 𝐵 is an element of 𝐶 , 𝑎 is an element of 𝐶 . This shows that
every element of 𝐴 is an element of 𝐶 . That is, 𝐴 ⊆ 𝐶 .

Once again, we can find the “order of discovery” here by looking at the proof from the
outside in, more or less. At the outermost level, we find the traces of the “prove an ‘every’ ”
strategy and the “prove an ‘if’ ” strategy that we began with.

Let 𝐴, 𝐵, and 𝐶 be sets, and suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 . … 𝐴 ⊆ 𝐶 .

Looking a little bit further back from the end, we see a definition unpacked:

… every element of 𝐴 is an element of 𝐶 . That is …

A bit further in yet, we have our second “every” strategy:

Let 𝑎 be any element of 𝐴. … 𝑎 is an element of 𝐶 . This shows that …

And at the middle of the proof we have our other two unpackings of the definition, and
our final observation about how they are related.

Then since every element of 𝐴 is an element of 𝐵, 𝑎 is an element of 𝐵. And since
every element of 𝐵 is an element of 𝐶 , 𝑎 is an element of 𝐶 .

7 Using “some” or “there is” statements

Say we are trying to prove this:

If there is a one-to-one function from 𝐴 to 𝐵, and there is a one-to-one function
from 𝐵 to 𝐶 , then there is a one-to-one function from 𝐴 to 𝐶 .

We can start by splitting up the “if” statement:

Suppose There is a one-to-one function from 𝐴 to 𝐵 There is a one-to-one
function from 𝐵 to 𝐶

Show There is a one-to-one function from 𝐴 to 𝐶

We have written down three “there is” statements. These are called existential generaliza-
tions, and each of them says that there is at least one of some kind of thing. (Even though
we use the singular expression “a one-to-one function,” we do not mean to imply that there
can’t be more than one function like this.)
So we know that there is a one-to-one function from 𝐴 to 𝐵, but we don’t know what
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specific function this is. How we can use this information? The first thing we should do is
give it a name. This gives us something more specific to hang onto in our reasoning. We
can replace our two suppositions with new, more specific-looking suppositions:

Suppose 𝑓 is a one-to-one function from 𝐴 to 𝐵 𝑔 is a one-to-one function
from 𝐵 to 𝐶

Show There is a one-to-one function from 𝐴 to 𝐶

We have introduced two new variables, 𝑓 and 𝑔 as “names” for functions that we are
supposing to exist.
Just like when we are proving “for every” statements, we have to be careful with our choice
of variables. It’s important that we aren’t already using the letters 𝑓 or 𝑔 as names for some
other things in this proof—otherwise we could get different uses of “𝑓” mixed up, which
would lead to mistakes. Beyond that, you can use whatever variable you want, but again
there are certain conventions which help us keep track of what kind of thing you are talking
about. For example: 𝑓 , 𝑔, ℎ for functions, 𝐴, 𝐵, 𝐶 or 𝑋, 𝑌 , 𝑍 for sets, lower-case 𝑎 for
an element of the set 𝐴, and so on.
(Note that we did not introduce a new variable for the “there is” statement we are trying
to show. That actually wouldn’t help at all.)
This helps, because now we can use things we know about one-to-one functions to draw
conclusions about the “specific” functions 𝑓 and 𝑔.
Like “for every” statements, “there is” statements can take a lot of different shapes, even
in the relatively regimented English of technical writing.

7.1 Example
Write down the “suppose” statements you would use to prove things from the following
existential statements.

(a) There is a one-to-one correspondence between 𝐴 and 𝐵.

Suppose 𝑓 is a one-to-one correspondence between 𝐴 and 𝐵

(b) There is a proof of 𝐴.

Suppose 𝑃 is a proof of 𝐴

(c) 𝑋 has a model.
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Suppose 𝑆 is a model of 𝑋

(d) Some subset of 𝑋 is inconsistent.

Suppose 𝑌 is a subset of 𝑋
𝑌 is inconsistent

(e) 𝑋 has a finite subset that entails 𝐴.

Suppose 𝑌 is a finite subset of 𝑋
𝑌 entails 𝐴

(f) Not every model of 𝑋 satisfies 𝐴.

Suppose 𝑆 is a model of 𝑋
𝑆 does not satisfy 𝐴

7.2 Exercise
Write down the “suppose” statements you would use to prove things from the following
existential statements.

(a) There is an onto function from 𝑃 𝐴 to 𝐴.
(b) 𝑋 is the extension of some formula.
(c) 𝑇 has a countable model.
(d) Not every subset of 𝐴 is empty.
(e) Some program decides the set of logical truths.
(f) There is at least one odd prime.

The strategies we have discussed so far are just a start. There are lots more strategies
that we’ll introduce as we go. (I’ll also add some of them to an updated version of this
document.) But this should be enough to get going on the exercises. You’ll also get lots
more examples and lots more practice in the weeks to come.
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